CONSTRUCTION SPECIFICATIONS AND DRAWINGS

Installation of a Precision Approach Path Indicator to serve RWY 251 at the Los Angeles International Airport in Los Angeles, California

April 2, 2011

Prepared by:
FEDERAL AVIATION ADMINISTRATION
AIR TRAFFIC ORGANIZATION
TECHNICAL OPERATIONS UNIT
WESTERN SERVICE AREA
ENGINEERING SERVICES
NAVAIDS ENGINEERING GROUP

TABLE OF CONTENTS

DIVISION 1 - GENERAL REQUIREMENTS

01010 SUMMARY OF WORK

DIVISION 2 - SITE WORK

02350 STEEL HELICAL PIERS

DIVISION 3 - CONCRETE

03100 CONCRETE FORMWORK 03200 CONCRETE REINFORCEMENT 03300 CAST-IN-PLACE CONCRETE

DIVISION 16 - ELECTRICAL

ATTACHMENTS:

• CONSTRUCTION DRAWINGS

SUMMARY OF WORK

TABLE OF CONTENTS

GENERAL	
1.1	SCOPE OF WORK
1.1.1	Installation of the PAPI LHA's
1.1.2	Installation of the PAPI Power and Control Station
1.1.3	Installation of Power and Control for the PAPI LHA's
1.1.4	Installation of the Incoming Power and Control for the PAPI
1.1.5	General Site Work
1.2	REFERENCES
1.2	TELLICES
1.3	DRAWINGS
1.3.1	Construction Drawings Provided
1.3.2	As-Built Drawings
1.4	SUBMITTALS
1.4.1	Material
1.4.2	Schedule
1.4.3	Schedule of Values
1.4.4	Safety Plan
1.4.5	Work Plan
1.4.6	Testing
DDADIIGTO	
PRODUCTS	COVERNMENT PURNICHER MATERIAL
2.1	GOVERNMENT FURNISHED MATERIAL
2.1.1	Inventory and Inspection of GFM
2.2	CONTRACTOR FURNISHED MATERIAL
2.3	MATERIAL
2.3.1	External Hardware
2.3.2	Galvanized Rigid Metal Conduit (GRMC)
2.3.3	Anti-oxidant compound
2.3.4	Asbestos Free Material
EXECUTION	
3.1	SCHEDULES
3.1.1	Work Schedule
3.1.2	Construction Schedule

LAX/RWY 25L-PAPI 01010 - PAGE 1

3.1.3	Weekly Look Ahead Work Schedule
3.1.4	Deviation from Work Schedule
3.1.5	Daily Construction Log
3.2	PRE-CONSTRUCTION MEETING
3.3	LAYOUT
3.4	SPECIAL REQUIREMENTS
3.4.1	Special Precautions
3.4.2	Safety Requirements
3.4.2.1	Runway Safety and Object Free Areas
3.4.2.2	Approach Surface
3.4.2.3	Construction Vehicle Traffic
3.4.2.4	Unauthorized Structures
3.4.2.5	Hazard Marking
3.4.2.6	Safety Plan
3.4.3	Radio Communications
3.4.4	Work Limitations
3.4.4.1	Trenches, Holes, and Excavations
3.4.5	Work Plan
3.5	PROTECTION OF EXISTING UTILITIES AND CABLES
3.6	INSTALLATION AND WORKMANSHIP
3.7	TEMPORARY FACILITIES
3.7.1	Temporary Water
3.7.2	Temporary Toilets and Sanitation
3.8	AIRPORT SECURITY, BADGING, AND ACCESS
3.9	SAFETY
3.10	SEDIMENTATION, EROSION, AND DUST CONTROL
3.11	DEBRIS CONTROL AND CLEAN-UP
3.12	INSPECTION & ACCEPTANCE

SUMMARY OF WORK

PART 1 GENERAL

1.1 SCOPE OF WORK

The work covered under this specification includes the installation of a Precision Approach Path Indicator (PAPI) to serve runway 25L at the Los Angeles International Airport in Los Angeles, California.

It is expected that all construction work on the airport will take place during a four hour period from 02:00 to 06:00 (AM) on select days, as made available by Airport Operations and the FAA. It is expected that no more than three working days may be offered per week. Actual work times and selected work days will be determined and adjusted as the project is in progress and can not be guaranteed.

The contractor is solely responsible for determining, complying with, and paying all associated cost required to work on and have access to the construction site. This includes complying with all of the Airport's security, badging, and insurance requirements. The time and cost required for this effort must be accounted for in the contractors initial bid price.

The contractor is required to furnish all labor, materials (except Government furnished), services, equipment, insurance, bonds, security notifications, licenses, permits, and fees in accordance with applicable federal, state and local regulatory requirements to complete the specified work. Any miscellaneous labor, equipment and/or materials not specifically detailed or specified, but required to complete the project, shall be provided as an integral part of the work.

The dimensions, measurements, and quantity of materials listed in this specification and on the construction drawings are estimated and are presented to give the contractor an idea of the total scope of work. The contractor is strongly encouraged to make a site visit to verify the existing conditions, quantities of materials, and amount of work required. The contractor is responsible for assuring that the bid reflects all work required to accomplish this project.

Due to the airport's access requirements, a site visit for this project will not be offered.

1.1.1 Installation of the PAPI LHA's

Contractor shall install the four Light Housing Assembly (LHA) units as indicated on the construction drawings. Work includes: Installation of the LHA concrete foundations and associated grounding; and Installation of the LHA Equipment.

1.1.2 Installation of the PAPI Power and Control Station

Contractor shall install the PAPI power and control (P/C) station as indicated on the construction drawings. Work includes: Installation of the concrete foundation and associated grounding; and Installation of the P/C rack and equipment.

1.1.3 Installation of Power and Control for the PAPI LHA's

Contractor shall install the power and control for the PAPI LHA's as indicated on the construction drawings. Work includes: Installation of the pull box near the PAPI P/C station, and Installation of power & control conduits and conductors between the P/C station and the LHA's.

1.1.4 Installation of the Incoming Power and Control for the PAPI

Contractor shall install the incoming power and control to the PAPI P/C station as indicated on the construction drawings. Work includes: Installation of a pull box near the existing runway 25R/25L Glide Slope equipment shelter and installation of the power and control from the GS bldg to the PAPI Power and Control station.

1.1.5 General Site Work

Contractor shall perform the general site work as indicated on construction drawings. Work includes: Installation of an access road and maintenance area around the LHA's.

1.2 REFERENCES

Airport Ground Vehicle Operations Guide available from: http://www.faa.gov/runwaysafety/asw/downloads/AGVO-guide.doc

1.3 DRAWINGS

Callouts on the construction drawings indicate work to be done under this contract unless specifically noted "installed by others" or "existing". Callouts indicating work to be done do not always include the word "install".

1.3.1 Construction Drawings Provided

Drawings applicable to this project are listed below. The written scale (e.g. 1"=100') is only valid for FAA "D - size" drawings (22"x34") and may be slightly off due to variations in printing. On reduced size drawings, the bar scales (where shown) and written dimensions remain valid.

LAX-B-PAPI25L-G001 VICINTIY LAYOUT
LAX-B-PAPI25L-G002 LAYOUT DETAILS
LAX-B-PAPI25L-G003 LHA, INSTALLATION DETAILS
LAX-B-PAPI25L-G004 POWER AND CONTROL STATION, INST DTL'S
LAX-B-PAPI25L-G005 HELICAL PIER FOUNDATION DETAILS
LAX-B-PAPI25L-G006 SYSTEM WIRING DIAGRAM

1.3.2 As-Built Drawings

The contractor shall provide three complete sets of As-Built drawings to the FAA Project Engineer at the end of the project. The following color codes shall be used:

Green -to indicate adding new text and/or new graphics or changes to existing text and/or graphics.

Red - to indicated the removal of existing text and or/ graphics.

Blue - to indicated general information to the Drafter.

Any additional diagrams and/or schematics that would be helpful for the maintenance of the facility should also be included.

1.4 SUBMITTALS

1.4.1 Material

The contractor shall submit for approval; catalog data, cut-sheets, samples, and any other relevant information on the contractor furnished material to be used on this project. Two copies of the submittal package shall be given to the FAA Project Engineer for approval. Submittals on materials shall include, but is not limited to:

- Coated galvanized rigid steel conduit.
- Cement concrete material.
- Geotextile fabric.
- Aggregate material.
- Rotomilled asphalt material
- Contractor furnished hardware.
- Contractor furnished electrical fittings and components.
- Contractor furnished cable and wire.
- Labels.
- Additional items deemed necessary by the Project Engineer.

1.4.2 Schedule

Prior to start, the contractor shall submit a schedule and work plan to the Project Engineer for approval. See section 3.1.2 for the maximum time allowed to complete this project. The schedule shall show start dates, duration, and finish dates for each work activity. Activities shall include, but are not limited to:

- Site layout.
- Installation of LHA foundations.
- Installation of the PAPI P/C station foundation.
- Installation of power and control for the PAPI LHA's.
- Installation of the incoming power and control for the PAPI.
- Site work.
- Inspection and cleanup.

The FAA reserves the right to modify the contractor's sequence of activities in the interest of facility operation and airport safety.

1.4.3 Schedule of Values

The contractor's proposal shall include a schedule of values, showing at a minimum, a breakdown of cost for each work activity listed below. Cost for each item should include any profit and overhead.

•	Site layout.	<u>\$.</u>
•	Installation of LHA foundations.	<u>\$.</u>
•	Installation of the PAPI P/C station foundation.	<u>\$.</u>
•	Installation of power and control for the PAPI LHA's.	<u>\$.</u>
•	Installation of the incoming power and control for the PAPI.	\$. .
•	Site work.	\$. .
•	Inspection and cleanup.	<u>\$.</u>
	TOTAL PROJECT COST	\$

1.4.4 Safety Plan

The contractor shall submit a safety plan per paragraph 3.4.2.6 of this section.

1.4.5 Work Plan

The contractor shall submit a work plan per paragraph 3.4.5 of this section.

1.4.6 Testing

The contractor shall complete, at his own expense, all testing as required by these specifications. The results shall be submitted to the FAA Project Engineer. Required testing includes, but is not limited to, the following:

- Cable insulation resistance test (see FAA-C-1217f, 5.3.4)
- Earth resistance test (see FAA-C-1217f, 5.3.6)

- All Required Concrete Testing (performed by an independent testing company).
- Soil Compaction Testing (performed by an independent testing company).

PART 2 PRODUCTS

Reference herein or in the construction drawings to any specific commercial product, process, or service, any trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Federal Aviation Administration. The contractor may submit a request for substitution of a product, process, or service specifically called out. Such request shall be through the submittal process.

2.1 GOVERNMENT FURNISHED MATERIAL

Government furnished material (GFM) for this project is listed as follows:

QIY	<u>IIEM</u>
4 ea.	Lamp Housing Assembly (LHA),
1 ea.	Power and Control Assembly (PCA)
1 ea.	Aiming Instrument Set, FA-17700/3
1 ea.	TI 6850.86 (Instruction Book)

TTEN (

Note: The material above will be available at an FAA storage location in Los Angeles. The Contractor is responsible for the loading, transportation, and unloading of the material to the field location.

2.1.1 Inventory and Inspection of GFM

The contractor shall sign a copy of the Government furnished material (GFM) list acknowledging receipt of the furnished material, noting any discrepancies if necessary. When the contractor signs for custody, he acknowledges receipt in good condition and assumes responsibility for any subsequent loss or damage. The contractor shall return all GFM that is not installed to the location where the material was picked up.

2.2 CONTRACTOR FURNISHED MATERIAL

The contractor shall furnish all material that is required and not otherwise indicated to be Government furnished. Materials furnished by the contractor shall be new, the standard products of manufacturers regularly engaged in the production of such materials, and of the manufacturer's latest designs that comply with the specification requirements.

The contractor is responsible for making their own arrangements for material delivery and receiving. The contractor shall <u>not</u> have any material delivered to any FAA offices. Delivery to the Airport address shall only be done with the prior approval of the airport management.

The list of contractor furnished material includes, but is not limited to:

- 2'x3' x3'deep electrical vaults.
- Helical Piers, as required.
- Concrete, re-bar, anchor bolts, etc.
- Power, control, and grounding cable, as required.
- Ground rods, #1/0 bare copper guard wire, exothermic welds and misc. hardware for grounding system.
- Geotextile fabric, as required.
- Aggregate material / Rotomill, as required.
- Coated galvanized rigid metal conduit, EMT, and PVC conduit as required.
- Electrical fittings and components, as required.
- Misc. hardware and Unistrut, as required.
- Labels for electrical components, cables, pull boxes, etc.
- Floor flanges, as required.
- 60 Amp Heavy duty safety switch (fused at 30 amps).

2.3 MATERIAL

2.3.1 External Hardware

All external hardware shall be hot dipped galvanized, stainless steel, or approved for long term outdoor use. All cut edges shall be filed smooth and treated with a cold galvanizing compound.

2.3.2 Galvanized Rigid Metal Conduit (GRMC)

All galvanized rigid metal conduit (GRMC) installed below slab, on grade, or underground shall be coated. GRMC shall conform to Steel Structures Painting Council Standard, SSPC-PS 10.01), or be field wrapped with 0.01 inch thick pipe wrapping plastic tape applied with 50% overlap. Fittings used underground shall be protected by field wrapping as specified herein for conduit.

2.3.3 Anti-oxidant compound

USE AN APPROVED ANTI-OXIDANT COMPOUND ON ALL INSTALLED HARDWARE WITH EXTERNAL/INTERNAL THREADS, AND WHERE EMT IS INSERTED INTO FRANGIBLE COUPLINGS. FAILURE TO DO THIS WILL RESULT IN THE CONTRACTOR REPLACING ANY ITEMS DAMAGED DUE TO SEIZED, GALLED, OR STRIPPED THREADS OR CONNECTIONS.

2.3.4 Asbestos Free Material

The Contractor shall not use any asbestos containing material (ACM) at any time during the construction. The Contractor shall verify that all material, including those supplied by third

parties, are asbestos free materials. A written certification letter shall be provided by the Contractor to the FAA certifying that the finished work is asbestos free.

PART 3 EXECUTION

3.1 SCHEDULES

3.1.1 Work schedule

It is expected that all construction work on the airport will take place during a six hour period from midnight to 06:00 am. These hours may be adjusted nightly by the FAA and/or the Airport.

The contractor shall furnish the Resident Engineer with emergency (24 hour) contact phone numbers for the contractor's superintendent and an alternate individual. Such numbers will be used if the contractor needs to be contacted outside of normal working hours

3.1.2 Construction Schedule

All work shall be completed within 14 available working days after the Notice to Proceed (NTP). Available working days will be determined by Airport Operations and the FAA – and cannot be guaranteed (see section 1.1).

3.1.3 Weekly Look Ahead Work Schedule

On a weekly basis, the contractor shall submit a schedule showing activities desired to be performed during the upcoming week. These work activities shall be approved by the FAA Project Engineer.

3.1.4 Deviation from Work Schedule

The Airport Manager and the FAA Project Engineer reserve the right to suspend or stop construction as necessary for the safety of aircraft or airport property. In addition, the FAA may adjust the work hours to satisfy the facility operations.

3.1.5 Daily Construction Log

The Contractor shall keep a Daily Construction Log. At a minimum, the daily log shall contain:

- Items accomplished for that day.
- Start and stop time of work.
- Name of workers (including sub-contractors), and hours they worked for that day.
- Weather (including sky, ground moisture conditions, and temperature).
- Material received.
- Documents and photographs showing the progress of work, and as required.

The Daily Construction Logs shall be turned over to the FAA Project Engineer on a weekly basis.

3.2 PRE-CONSTRUCTION MEETING

Prior to the start of any work and the contractor's access to the work site, the contractor shall be required to attend a pre-construction meeting. Attendees at the meeting may include, but is not limited to, the FAA Project Engineer, Resident Engineer, FAA Contracting Officer, the Airport Manager, Airport Operations, FAA maintenance, and other interested parties as determined by the Project Engineer. Topics at the meeting will include site access, airport security, work safety, work schedule, project expectations, work procedures, emergency plans, and other items relating to the execution of the project.

3.3 LAYOUT

The contractor shall verify the field measurements and coordinates indicated on the drawings with the FAA Project Engineer before starting any layout. The contractor shall lay out his work from base lines and bench marks indicated on the drawings and shall be responsible for all measurements in connection therewith. The contractor shall furnish, at his own expense, all stakes, templates, platforms, equipment, tools, materials and labor as may be required in laying out any part of the work. All layout work shall be accomplished by a Professional Land Surveyor. The contractor is to properly maintain the specified layouts to assure proper alignment of the construction. Roads indicated to be installed under this contract shall be laid out and clearly marked at the beginning of the project and used as access roads during construction so as to minimize the disturbance to the surrounding areas.

3.4 SPECIAL REQUIREMENTS

3.4.1 Special Precautions

The contractor shall conform to the rules and regulations of the airport and shall coordinate all work with the FAA Project Engineer.

Note: Unscheduled interruptions of the electrical service to FAA facilities may cause aircraft accidents and loss of life. Work requiring a temporary or permanent de-energization of equipment shall be scheduled in writing with the FAA Project Engineer and the onsite FAA maintenance personnel. Only onsite FAA maintenance personnel are authorized to energize/de-energize equipment, or to operate a circuit breaker, switch, or fuse in an FAA facility.

3.4.2 Safety Requirements

Aviation Safety is a primary consideration during airport construction. The Contractor is completely responsible for complying with the Airport's safety and operation procedures, as dictated by the Airport.

During the performance of this contract, the airport runways, taxiways, and aircraft parking aprons shall remain in use by aircraft to the maximum extent possible, CONSISTENT WITH CONTINUAL SAFETY. The contractor shall not allow employees, subcontractors, suppliers, or any other unauthorized person to enter or remain in any airport area which would be hazardous to persons or to aircraft operations.

3.4.2.1 Runway Safety and Object Free Areas

The <u>Runway Safety Area (RSA)</u> is a rectangular area extending 250 ft on each side of the runway centerline and 1000 ft beyond (downwind) the end of the runway threshold.

Prior to commencement of work, the contractor shall delineate the boundaries of the safety area with 3/8" x 1 1/2" x 4' long pointed lath (survey sticks) and bright orange flagging.

The contractor shall not be allowed into the Runway Safety Area without prior approval from the FAA Project Engineer and the Airport Manager. In general, no workers or equipment shall be allowed inside the safety area when aircraft are using the runway. Work to be done inside the safety area shall be scheduled and closely coordinated with the FAA Project Engineer and the Airport manager.

The contractor shall not be allowed to place vehicles and/or equipment inside the <u>Runway Object Free Area (OFA)</u> without the approval of the FAA Project Engineer. The Runway Object Free Area (OFA) is a rectangular area extending 400 ft on each side of the runway centerline and 1000 ft beyond (downwind) the end of the runway threshold.

In addition to the restrictions of working in the Runway Safety area and Object Free Area, the Airport Manager and/or the FAA Project Engineer may impose more restrictive requirements as needed to maintain airport safety.

3.4.2.2 Approach Surface

Not used.

3.4.2.3 Construction Vehicle Traffic

The contractors' vehicles and equipment shall enter the work site and construction areas at approved locations, and by way of authorized routes. The use of runways, aprons, taxiways, ramps, will not be permitted unless specifically approved by the FAA Project Engineer and the Airport Manager. The contractor shall inform all personnel that aircraft have the right-of-way at all times. The contractor shall be responsible for maintaining control and security at each entry point, as approved.

As a minimum, all vehicles and motorized equipment that enter the Airport Operations Area (AOA) shall be marked per AC 150/5210-5B (or latest version). In general, all vehicles and motorized equipment inside the AOA shall be marked with a three foot by three foot flag with

international orange and white 12 inch squares displayed in full view above the vehicles. At night, or during periods of low visibility, all vehicles and equipment operating in the AOA shall be identified with an approved yellow flashing beacon.

In addition, no personnel will be permitted to drive on the airside of the airport unless he/she has read, and certified that he/she has read, "A Guide to Ground Vehicle Operations on an Airport" (DOT/FAA/AS-90-3). A copy of this document is attached at the end of this specification.

THE AIRPORT AND/OR THE FAA MAY HAVE ADDITIONAL REQUIREMENTS FOR VEHICLES, EQUIPMENT, AND PERSONNEL OPERATING INSIDE THE AOA.

3.4.2.4 Unauthorized Structures

The contractor shall install no fences or other physical obstructions on or around the project work area without the approval of FAA Project Engineer.

3.4.2.5 Hazard Marking

The contractor shall use barricades, flashers, flags, traffic cones, signs, etc., for the following:

- To prevent aircraft from taxiing onto a closed runway, taxiway or apron.
- To outline construction/maintenance areas.
- To identify isolated hazard areas such as open manholes, ditches, potholes, waste areas, etc.
- To identify FAA and Airport facilities, cables, power lines, ILS Critical areas, and other sensitive areas, in order to prevent damage, interference and facility shutdown.

All hazard markings shall be furnished and setup by the contractor. Barricades inside the runway safety area shall be lightweight and frangible. For daytime use, barricades should be supplemented by flags; for night time use, they shall have flashing yellow lights. Night time barricades shall not penetrate the approach surface. All markings shall be to the approval of the FAA Project Engineer.

3.4.2.6 Safety Plan

Prior to commencement of work, the contractor shall submit a safety plan for approval by the Project Engineer. An acceptable safety plan shall take into account areas discussed in Appendix 1 of AC 150/5370-2C and the Airport's rules for construction activity at the Airport.

3.4.3 Radio Communications

The contractor's superintendent (or someone appointed by the superintendent) shall be required to monitor a transceiver radio at <u>all times</u> when the contractor is operating inside the runway safety area. The transceiver shall be contractor furnished with a frequency range of 118-136 Mhz and tuned to the local ATCT Tower or Ground Control, as required. Such radios shall be used so that any unusual occurrence of approaching, departing, taxiing aircraft can be acknowledged by all concerned parties. The contractor's use of the transceiver radio is basically for listening purposes, transmitting should be in emergencies only.

3.4.4 Work Limitations

The contractor's activities shall be planned and scheduled to minimize disruption of normal aircraft activities.

3.4.4.1 Trenches, Holes, and Excavations

Trenches, holes, and any other type of excavation within the runway safety area are not allowed without either closing the runway or adequately displacing/relocating the runway threshold to accommodate the work. If a runway closure or displacement/relocation of the runway threshold becomes necessary, the contractor shall submit a detailed plan which must be approved by the Airport and the FAA.

3.4.5 Work Plan

Prior to commencement of work, the contractor shall submit a work plan for approval by the Project Engineer (see 1.4). An acceptable work plan shall take into account all areas discussed in this section.

3.5 PROTECTION OF EXISTING UTILITIES AND CABLES

The existing utility lines, utility structures and all underground cables, as may be shown on the drawings are approximate and incomplete. Where excavation occurs in the vicinity of existing utilities or cables, the contractor shall use whatever means necessary, including a private cable locator, to locate the existing utilities or cables prior to any excavation. The contractor shall stake all utility or cable crossings and such areas shall be hand excavated. The contractor shall immediately repair any damage done by the contractor or suppliers to utilities or cable within the work area.

3.6 INSTALLATION AND WORKMANSHIP

All work shall be performed according to the intent of the contract, and normal and accepted industry and Government standards.

All work shall be accomplished by skilled workers regularly engaged in this type of work. Where required by local regulations, the workers shall be properly licensed. Electrical terminations and splices shall be done by a qualified electrician.

The contractor shall give constant attention to the work to facilitate the progress thereof, and shall cooperate with the Project/Resident Engineer in every way possible. The contractor shall have a competent superintendent on the work site at all times who is fully capable of reading and thoroughly understanding the plans and specifications and shall receive and fulfill instructions from the Project/Resident Engineer.

An initial inspection shall be conducted when a representative sample of work has been completed. This work shall be approved by the FAA Project Engineer or his representative, prior to the commencement of additional work.

All conduits shall be completely cleaned prior to installing cable. A flexible mandrel shall be used to clean out mud, dirt, and debris from the raceways.

Underground conduits shall be installed so that no water can be trapped in the raceway (water must able to drain out of one end).

All foundations, manholes, vaults, pull boxes, equipment racks, roads, and other above ground structures shall be installed square (perpendicular and parallel) to the runway centerline, prevailing structure or road as indicated on the drawings unless specifically indicated to be otherwise. Elevated conduits and structures (those extending above grade) shall be installed level and plumb. Unless otherwise indicated, maximum tolerance for vertical plumb ness is 1/8" horizontal for every four feet vertical. Exposed raceways shall be installed parallel to or at right angles with the lines of the finished structure, unless otherwise indicated.

Tops of foundations, cans, pull boxes, manholes, vaults, etc., shall be uniform with the tops of concrete at the surrounding structures, natural grade or as indicated on the drawings or as directed by the Project Engineer. Unless otherwise indicated, top of foundations, cans, pull box's, manholes, etc. shall be level with a maximum tolerance of 1/16" per foot.

Road curves shall be as indicated on the drawings or as indicated by the Project Engineer. Edges of roads, walkways and graveled areas shall be clean, sharp, and well defined. Installed surface material shall not be allowed to spill outside the defined edges.

Installed foundations, structures, walkways, and roads not meeting the above requirements shall be removed, disposed of, and re-installed correctly at the contractors expense.

3.7 TEMPORARY FACILITIES

The contractor shall provide and pay for all temporary services and facilities as specified below and as necessary for the proper and expeditious execution of the work. The contractor shall make, or have made, all connections to existing services and sources of supply as necessary

and/or indicated and pay all charges for same. All work under this Section shall comply with applicable laws, rules, regulations, codes, ordinances, and orders of all Federal, State, and Local authorities having jurisdiction for the safety of persons, materials and property. The contractor shall remove all such temporary installations and connections when no longer necessary for the project work.

3.7.1 Temporary Water

The contractor shall make arrangements to furnish a potable water supply for workers and project work, and pay for all water and services.

3.7.2 Temporary Toilets and Sanitation

The contractor shall provide ample and suitable on site sanitary conveniences with proper enclosures for the use by the workers, FAA personnel, and FAA support personnel. Such conveniences shall be kept clean, properly ventilated and installed and maintained in conformity with requirements of all laws and ordinances governing such installations. Locations shall be subject to the FAA Project Engineer's approval. After completion of the work such conveniences shall be removed from the site.

3.8 AIRPORT SECURITY, BADGING, AND ACCESS

The contractor is solely responsible for determining, complying with, and paying all associated cost required to work on and have access to the construction site. This includes complying with all of the Airport's security, badging, and insurance requirements. The time and cost required for this effort must be accounted for in the contractors initial bid price.

The FAA may provide a letter indicating that the contractor has a need to work on the airport. Otherwise, the contractor is completely responsible for meeting the terms required by the airport.

Only direct construction support personnel, vehicles and/or equipment will be allowed to the work site. The FAA will not provide escorts for the contractor, his subcontractors, or suppliers. The contractor shall use only the access gates and haul roads that are designated by the FAA Project Engineer. The contractor shall be required to keep access gates guarded and closed during construction hours. The gate may be opened only for authorized vehicle traffic flow. At such times as this gate is not guarded, it shall be closed and securely locked as approved by the Airport and the FAA.

3.9 SAFETY

All work shall be accomplished in accordance with OSHA Regulations (Standards – 29 CFR), Part 1926, Safety and Health Regulations for Construction.

Protective Equipment, including personal protective equipment for eyes, face, head, and protective clothing shall be used wherever it is necessary by reasons of hazards or environment [1926.95].

- Head protective equipment (helmets) shall be worn in areas where there is a possible danger of head injuries from impact, flying or falling objects, or electrical shock and burns [1926.100].
- Eye and face protection equipment shall be worn when machines or operations present potential eye or face injury [1926.102].

Specific work and operations requiring the mandatory use of personnel protective equipment shall be determined by the FAA Project Engineer.

3.10 SEDIMENTATION, EROSION, AND DUST CONTROL

The Contractor shall submit a plan for sedimentation, erosion, and dust control. The plan shall show best management practices such as the use of silt fencing and/or hay bales to filter sediments from runoff and the application of water as needed to control dust.

3.11 DEBRIS CONTROL AND CLEAN-UP

The work site shall be kept clean and orderly during the progress of work. Special attention shall be exercised to prevent the production of FOD (foreign object debris) which could cause damage to aircraft and/or airport equipment. Prior to the Contract Final Inspection, the contractor shall clean all areas of the construction site. This shall include but is not limited to the dress-up, sweep-up, and re-seeding of all areas disturbed during construction. A NEAT FINAL APPEARANCE OF THE INSTALLED FACILITIES (INTERIOR AND EXTERNAL) SHALL BE EMPHASIZED! All clean-up work shall be to the approval of the FAA Project Engineer.

Upon completion of work, the contractor shall be required to obtain a letter from the Airport Manager indicating that the work area has been left in an acceptable condition. A copy of the letter shall be given to the FAA Project Engineer.

3.12 INSPECTION & ACCEPTANCE

The Contractor shall maintain an adequate inspection system and perform such inspections to ensure that the work performed under the contract conforms to contract requirements. The Contractor shall maintain complete inspection records and make them available to the Government.

THE PRESENCE OR ABSENCE OF A GOVERNMENT INSPECTOR DOES NOT RELIEVE THE CONTRACTOR FROM ANY CONTRACT REQUIREMENT.

The Government inspections and tests are for the sole benefit of the Government and do not-

- Relieve the Contractor of responsibility for providing adequate quality control measures;
- Relieve the Contractor of responsibility for damage to or loss of the material before acceptance;
- Constitute or imply acceptance.

The Contractor shall, without charge, replace or correct work found by the Government not to conform to contract requirements. The Contractor shall promptly segregate and remove rejected material from the premises.

END OF SECTION

STEEL HELICAL PIERS

TABLE OF CONTENTS

GENERAL	
1.1	DESCRIPTION
1.1.1	Scope
1.1.2	Design
1.2	QUALITY ASSURANCE
1.2.1	Installer Qualifications
1.2.2	Manufacturing
1.3	SUBMITTALS
PRODUCTS	
2.1	LISTING
2.2	PIER SHAFTS (LEAD SECTIONS AND EXTENSIONS)
2.3	HELIX BEARING PLATE
2.4	BOLTS
2.5	COUPLINGS
2.6	FINISH
EXECUTION	
3.1	EQUIPMENT
3.1.1	Installation Equipment
3.1.2	Torque Monitoring Devices
3.2	INSTALLATION PROCEDURES
3.2.1	Advancing Sections
3.2.2	Termination Criteria

STEEL HELICAL PIERS

PART 1 GENERAL

1.1 DESCRIPTION

1.1.1 **Scope**

The work in this section consists of furnishing and installing steel Helical Piers.

1.1.2 Design

Unless otherwise indicated on the construction drawings, the steel Helical Piers shall be designed and installed to resist an unfactored load of 25,000 pounds.

1.2 QUALITY ASSURANCE

1.2.1 Installer Qualifications

Installation shall be done by an authorized installation contractor. Proof of current certification with the helical pier manufacturer shall be submitted to the FAA Project Engineer prior to starting installation.

1.2.2 Manufacturing

Steel Helical Piers as specified shall be manufactured by a facility whose quality control systems comply with ISO (International Organization of Standard) 9001 requirements. Certificates of Registration denoting ISO Standards Number shall be presented upon request to the FAA Project Engineer.

1.3 SUBMITTALS

Submit shop drawings indicating shaft and helix sizes, and information on the manufacturer; include the manufacturer's catalog cuts and data sheets.

PART 2 PRODUCTS

2.1 LISTING

The steel Helical Piering system shall be ICBO listed. Installing contractor shall furnish evidence to the FAA Project Engineer by means of the ICBO evaluation report number ER-5110.

2.2 PIER SHAFTS (LEAD SECTIONS AND EXTENSIONS)

The central steel shaft, consisting of lead sections, helical extensions, and plain extensions, shall be Type SS (Square Shaft) or RS (Round Shaft) or a combination of the two (SS to RS Combo Pile).

- 2.2.1 SS5 1-1/2" Material: Shall be hot rolled Round-Cornered-Square (RCS) solid steel bars meeting dimensional and workmanship requirements of ASTM A29. The bar shall be modified medium carbon steel grade (similar to AISI 1044) with improved strength due to fine grain size.
- **2.2.1.a** Torque strength rating = 5,500 ft-lb
- **2.2.1.b** Minimum yield strength = 70 ksi
- 2.2.2 SS150 1-1/2"; SS175 1-3/4; SS200 2"; SS225 2-1/4" Material: Shall be hot rolled Round-Cornered-Square (RCS) solid steel bars meeting the dimensional and workmanship requirements of ASTM A29. The bar shall be High Strength Low Alloy (HSLA), low to medium carbon steel grade with improved strength due to fine grain size.
- **2.2.2.a** Torque strength rating: SS150 = 7,000 ft-lb; SS175 = 11,000 ft-lb; SS200 = 16,000 ft-lb; SS225 = 23,000 ft-lb
- **2.2.2.b** Minimum yield strength = 90 ksi
- **2.2.3** *Type RS3500 3-1/2" OD Material*: Shall be structural steel tube or pipe, seamless or straight-seam welded, per ASTM A53, A252, ASTM A500, or ASTM A618. Wall thickness is 0.300" (schedule 80).
- **2.2.3.a** Torque strength rating = 13,000 ft-lb
- **2.2.3.b** Minimum yield strength = 50 ksi

2.3 HELIX BEARING PLATE:

Shall be hot rolled carbon steel sheet, strip, or plate formed on matching metal dies to true helical shape and uniform pitch. Bearing plate material shall conform to the following ASTM specifications.

2.3.1 SS5 Material: Per ASTM A572, or A1018, or A656 with minimum yield strength of 50 ksi. Plate thickness is 3/8".

- 2.3.2 SS125 and SS1375 Material: Per ASTM A572 with minimum yield strength of 50 ksi. Plate thickness is 3/8" or ½".
- **2.3.3** *SS150 and SS175 Material*: Per ASTM A656 or A1018 with minimum yield strength of 80 ksi. Plate thickness is 3/8" or ½".
- 2.3.4 SS200 and SS225 Material: Per ASTM A656 or A1018 with minimum yield strength of 80 ksi. Plate thickness is ½".
- 2.3.5 RS2875 Material: Per ASTM A36, or A572, with minimum yield strength of 36 ksi. Plate thickness is 3/8" or ½".
- **2.3.6** *RS3500 Material*: Per ASTM A36, or A572, or A1018, or A656 depending on helix diameter, per the minimum yield strength requirements cited above. Plate thickness is 3/8" or ½".

2.4 BOLTS

The sizes and types of bolts used to connect the Helical Pier extensions to lead sections or another extension shall conform to the following ASTM specifications:

- 1. 1 ½ inch Piers: ¾ inch diameter bolt per ASTM A320 Grade L7.
- 2. 1 3/4 inch Piers: 7/8 inch diameter bolt per ASTM A193 Grade B7.

2.5 COUPLINGS

Couplings will be formed as an integral part of (rcs) shaft extension material through a forging process.

2.6 FINISH

All material shall have a Class B-1 hot dipped galvanized coating complying with ASTM A153.

PART 3 EXECUTION

3.1 EQUIPMENT

3.1.1 Installation Equipment

1. Shall be rotary type motor with equal forward and reverse torque capabilities. This equipment shall be capable of continual adjustment of the torque drive unit's revolutions per minute (RPM's) during installation. Percussion drilling equipment will not be allowed.

- 2. Shall be capable of applying installation torque equal to the torque required to meet the pier loads.
- 3. Equipment shall be capable of applying down pressure and torque simultaneously.

3.1.2 Torque Monitoring Devices

1. The torque being applied by the installation units shall be monitored throughout the installation by the installer. The torque monitoring device shall either be a part of the installing unit or an independent device in-line with the installing unit. Calibration for either unit shall be available for review by the FAA.

3.2 INSTALLATION PROCEDURES

3.2.1 Advancing Sections

- 1. Engage and advance the Helical Pier sections in a smooth, continuous manner with the rate of pier rotation in the range of 5 to 20 RPM.
- 2. Apply sufficient down pressure to uniformly advance the helical sections to approximately 3-inches per revolution. The rate of rotation and magnitude of down pressure must be adjusted for different soil conditions and depths in order to maintain the penetration rate.
- 3. If the helical section ceases to advance, refusal will have been reached and the installation shall be terminated.

3.2.2 Termination Criteria

- 1. The torque as measured during the installation shall not exceed the torsional strength rating of the steel helical lead and extension sections.
- 2. The minimum depth criteria indicated on the Drawings must be satisfied prior to terminating the steel Helical Pier.
- 3. The top helix is to be located not less than five (5) feet below the bottom grade. The project drawings may indicate a greater depth.
- 4. If the torsional strength rating of the pier and/or installing unit has been reached prior to satisfying the minimum depth required, the installing contractor shall have the following options:
 - a. Terminate the installation at the depth obtained with the approval of the FAA Project Engineer or

- b. Remove the existing pier and install a pier with smaller and/or fewer helices. This revised pier shall be terminated at least three (3) feet beyond terminating depth of the original pier.
- 5. In the event the minimum installation torque is not achieved at minimum depth, the Contractor shall install the foundation deeper using additional plain extension sections.
- 6. The average torque for the last three feet of penetration shall be used as a basis of comparison with the minimum recommended installation torque. The average torque is the average of the last three readings recorded at one foot intervals. This average torque in intended solely as an indication of the pier's ultimate compression capacity.
- 7. The installer shall keep a written installation record for each Helical Pier. This record shall include the following information:
 - a. Project name and location
 - b. Name of authorized and certified dealer and installer.
 - c. Name of installer's foreman or representative witnessing the installation.
 - d. Date of installation.
 - e. Location of Helical Pier.
 - f. Description of lead section including number and diameter of helices and extensions used.
 - g. Overall depth of installation from a known reference point.
 - h. Installation torque at termination of pier.

END OF SECTION

CONCRETE FORMWORK

TABLE OF CONTENTS

3.3

GENERAL 1.1	GENERAL
PRODUCTS	
2.1	FORMS
2.2	CYLINDRICAL CONCRETE PIERS
2.3	FORM TIES
2.4	FORM OIL
EXECUTION	
3.1	FORM WORK PLACEMENT
3.2	FORM CURING

FORM REMOVAL

CONCRETE FORMWORK

PART 1 GENERAL

1.1 GENERAL

The contractor shall provide all labor, equipment and materials as required to locate and place concrete forms specified herein or on applicable drawings.

PART 2 PRODUCTS

2.1 FORMS

Forms shall be wood, plywood, metal or other approved material. The contractor may use prefabricated forms for cylindrical foundations if indicated on the applicable drawings. All form materials shall be of the grade or type suitable to obtain the kind of finish specified.

2.2 CYLINDRICAL CONCRETE PIERS

All cylindrical concrete piers, if required, shall be formed to a depth of two feet minimum. Use approved cylindrical forms.

2.3 FORM TIES

Form ties shall be either fixed band type or threaded internal disconnecting type with a working load suitable to prevent deformation of forms. They shall be of the type as to leave no metal closer to the surface than 1/2 inches for steel ties and 1 inch for stainless steel ties. Twisted wire ties shall not be permitted.

2.4 FORM OIL

Form oil shall be nonstaining and shall not cause softening of the concrete or impede the wetting of surfaces to be cured with water or curing compounds.

PART 3 EXECUTION

3.1 FORMWORK PLACEMENT

Formwork shall not be placed prior to inspection, testing or approval of the excavated area and imbedded items by the Resident Engineer. Forms shall result in a final structure which does not exceed +1/2 inch variation in any dimension shown on the applicable drawings. Form joints shall

be sufficiently tight to prevent leakage of mortar. Form oils shall be placed on forms or form ties and shall be removed from reinforcing steel or conduits if accidentally applied to such.

3.2 FORM CURING

In hot, dry climates, wood forms remaining in place shall not be considered adequate curing, but shall be loosened so that the concrete surfaces may be cured in accordance with 3-3.6.

3.3 FORM REMOVAL

Forms shall not be removed until concrete has attained at least 30 percent of the specified 28-day compressive strength.

END OF SECTION

CONCRETE REINFORCEMENT

TABLE OF CONTENTS

GENERAL

1.1	GENERAL
1.2	REFERENCES
1.2.1	American Society for Testing and Materials (ASTM)
1.2.2	American Concrete Institute (ACI) Standards
PRODU	CTS
2.1	REINFORCING STEEL
2.2	TIE WIRE, CHAIRS, AND SPACERS
EXECU:	ΓΙΟΝ
3.1	REINFORCEMENT SURFACES
3.2	BENDING
3.3	HOOKS
3.4	PLACING REINFORCEMENT
3.5	OUALITY ASSURANCE

CONCRETE REINFORCEMENT

PART 1 GENERAL

1.1 GENERAL

The contractor shall provide the necessary labor, materials and equipment for the placement of steel reinforcement as specified herein and shown on the applicable drawings.

1.2 REFERENCES

The following specifications and standards of the issues currently in force, form a part of this section and are applicable as specified herein.

1.2.1 American Society for Testing and Materials (ASTM)

ASTM A 615 - Deformed Billets Steel Bars for Conc. Reinforcement

ASTM A 185 - Welded Wire Fabric for Concrete Reinforcement

1.2.2 American Concrete Institute (ACI) Standards

ACI 315 - Manual of Engineering and Placing Drawings for Reinforced Concrete Structures

PART 2 PRODUCTS

2.1 REINFORCING STEEL

Reinforcing steel shall be new, clean, undamaged, and unless otherwise indicated, conforming to ASTM A-615, grade 60.

2.2 TIE WIRE, CHAIRS, AND SPACERS

All devices necessary to properly space, support and fasten steel reinforcement in place during concrete placement shall conform to ACI 315. Tie wire shall be 16 gauge or larger annealed iron wire.

PART 3 EXECUTION

3.1 REINFORCEMENT SURFACES

Steel reinforcement shall be free of mud, oil or other nonmetallic coatings which may affect bonding quality. Mill scale or rust remaining after hand brushing with a wire brush is permissible.

3.2 BENDING

All bends in bars and ties shall be cold bent. No bends shall be made in bars or ties partially embedded in concrete.

3.3 HOOKS

Hooks indicated shall be 180 degree hooks. The bend diameter as measured on the inside of the bar shall be not less than 6 bar diameters for bars and not less than 1-1/2 inches for #3 ties.

3.4 PLACING REINFORCEMENT

Steel reinforcement shall be accurately placed at the spacing and in the sizes indicated on the applicable drawings and secured against displacement during the pour operations. Reinforcement shall be placed within +1/2 inch of the indicated dimensions.

3.5 QUALITY ASSURANCE

Two copies of mill certificates of steel compliance with ASTM A 615 shall be submitted to the Resident Engineer at the time of site delivery. The certificate shall be signed by an authorized officer of the contractor, and shall include the project name and location, and the quantity and delivery date to which the certificate applies.

END OF SECTION

CAST-IN-PLACE CONCRETE

TABLE OF CONTENTS

GENERAL	
1.1	GENERAL
1.2	REFERENCES
1.2.1	American Society for Testing and Materials (ASTM)
1.2.2	American Concrete Institute (ACI) Specification
1.3	SUBMITTALS
PRODUCTS	
2.1	CEMENT
2.2	AGGREGATES
2.3	WATER
2.4	ADMIXTURES
2.5	QUALITY
2.5.1	Slump
2.5.2	Strength
2.5.3	Air Content
2.5.4	Proportions
EXECUTION	
3.1	MIXING AND PLACING CONCRETE
3.1.1	Site Preparation
3.1.2	Mixing
3.1.3	Conveying
3.1.4	Depositing
3.1.5	Cylindrical Concrete Piers
3.1.6	Consolidation
3.1.7	Finish
3.2	CURING
3.3	ANCHOR BOLTS, PLATES, AND COUPLINGS
3.3.1	Anchor Bolts and Plates
3.3.2	Embedded Couplings
3.4	QUALITY ASSURANCE
3.4.1	Testing
3.4.2	Concrete Certification
3.5	REPAIR AND REPLACEMENT

CAST-IN-PLACE CONCRETE

PART 1 GENERAL

1.1 GENERAL

The contractor shall provide the necessary materials, labor and equipment for the placement of concrete as specified herein and shown on applicable drawings.

1.2 REFERENCES

The following specifications and standards of the issues currently in force, form a part of this section and are applicable as specified herein.

1.2.1 American Society for Testing and Materials (ASTM) Specifications

- ASTM C 33 Specifications for Concrete Aggregates
- ASTM C 94 Specifications for Ready-Mixed Concrete
- ASTM C 143 Slump of Portland Cement Concrete
- ASTM C 150 Specification for Portland Cement
- ASTM C 231 Air Content of Freshly Mixed Concrete by the Pressure Method
- ASTM C 260 Specification for Air-Entraining Admixtures for Concrete
- ASTM C 494 Specification for Chemical Admixtures for Concrete

1.2.2 American Concrete Institute (ACI) Specification

ACI 211.1 - Recommended Practice for Selecting Proportions for Normal and Heavyweight Concrete

1.3 SUBMITTALS

Provide certification signed by material producer and contractor that all materials and mix compositions comply with the specified requirements.

PART 2 PRODUCTS

2.1 CEMENT

All cement shall conform to ASTM C 150, Type I or Type III as indicated on the drawings.

2.2 AGGREGATES

Aggregate shall conform to ASTM C 33 except that maximum aggregate size shall be 3/4-inch.

2.3 WATER

Water used in mixing and curing operations shall be clean, and free from oils, acids, organic matter and chemical suspensions which may adversely affect cure times, strength requirements or service life of the concrete.

2.4 ADMIXTURES

Air entraining admixtures shall conform to ASTM C 260. Admixtures used for water-reducing and retarding shall conform to ASTM C 494, Type A or Type D.

2.5 QUALITY

2.5.1 Slump

The concrete shall have a slump of 3 to 4 inches.

2.5.2 Strength

Unless otherwise indicated on the construction drawings, Type I concrete shall have a 28 day compressive strength of 3,000 psi and Type III shall have a 7 day compressive strength of 3,000 psi.

2.5.3 Air Content

Air entraining for all concrete shall be 4 to 8 percent.

2.5.4 Proportions

Concrete materials shall be proportioned in accordance with ACI 211.1 for site mixed concrete and ASTM C 94 for ready mixed concrete.

PART 3 EXECUTION

3.1 MIXING AND PLACING CONCRETE

3.1.1 Site Preparation

Prior to placing concrete all areas to receive concrete shall be inspected and approved by the Resident Engineer. Concrete shall not be deposited on muddy or frozen material. All surfaces to be in contact with the concrete shall be wetted.

3.1.2 Mixing

All mixers used for ready mix or site mix operations shall be cleaned prior to material recharge. The area of operation of the mixers shall be such as to not endanger existing structures or excavations. All concrete shall be mixed until there is a uniform distribution of materials. Concrete having attained initial set or having contained water for more than 90 minutes shall not be used in the work.

3.1.3 Conveying

Concrete shall be conveyed from the mixer to the deposit site by equipment which will prevent separation or loss of material and which will ensure a nearly continuous flow of material at the deposit site.

3.1.4 Depositing

Concrete shall be placed in such a manner as to prevent displacement of forms or reinforcement. Placing shall be stopped if contamination due to sloughing occurs until the contaminant can be removed. In the case of form or reinforcement displacement, placing may be continued only if the displacement is corrected within specified tolerances. The placing of concrete shall be a continuous operation at each deposit site and shall be completed within 1-1/2 hours after the addition of water. Concrete shall be deposited in 12 to 18 inch layers as level as possible prior to consolidation operations. Under no circumstances shall fresh concrete be placed over concrete that is no longer plastic. Time between placements at each deposit site shall not exceed one hour for regular mixes and two hours for retarded mixes.

3.1.5 Cylindrical Concrete Piers

Tops of piers shall be furnished flat within the confines of the Sonotube forms. Unless otherwise approved, the edges shall have a 1/2" or 3/4" radius. No spillage (mushrooming) over the tops of forms will be allowed.

3.1.6 Consolidation

Consolidation of concrete during and after placing shall be performed using an internal vibrator with a vibration frequency not less than 150 hertz. Each layer shall be consolidated so that concrete is thoroughly worked around reinforcement, embedded items and forms. Vibrators shall penetrate about 6 inches into underlying layers to ensure proper union of the layers. Movement of the vibrator over the layer shall be such as to ensure uniform plasticity without pooling of cement.

3.1.7 Finish

After the concrete has been placed and consolidated, the surface shall be screed with straight edges, floated, and troweled to the required finish level. All concrete surfaces shall have a smooth finish except for exposed top surfaces which shall have a broom finish. Broom lines shall be straight and parallel to the form edges and well defined. Unless otherwise indicated on the drawings, the foundation surface shall be level +/- 1/8" and all exposed edges shall be chamfered 1 inch (1/2" or 3/4" radius on circular tops). A NEAT, CLEAN, PROFESSIONAL CONCRETE FINISH IS REQUIRED! Concrete not meeting this requirement shall be completely removed and replaced at the contractor's expense.

Apply a Concrete Curing Compound (SealMaster or as approved) as directed by the manufacturer and as approved. Concrete Curing Compound should generally be applied once the concrete is firm enough to walk on with no surface water present (about one hour after final trowelling or when application will not mar surface).

3.2 CURING

Concrete shall be maintained above 50 degrees F and less than 120 degrees F and in a moist condition during the cure period. The cure period shall be 7 days when Type I Portland cement is used and 3 days when Type III Portland cement is used. Exposed surfaces shall be covered with burlap, cotton, or other approved fabric or sand. If air temperatures are expected to exceed 75 degrees F, water curing shall be continuous and forms shall be loosened as soon as the concrete has set sufficiently to prevent damage. In conditions where air temperature may be expected to fall below 40 degrees F, equipment and covering to maintain a 50 degree concrete temperature shall be provided. Salt or other chemicals to prevent freezing shall not be permitted.

3.3 ANCHOR BOLTS, PLATES, AND COUPLINGS

3.3.1 Anchor Bolts and Plates

Anchor bolts shall be installed in concrete prior to the concrete setting and at a time and manner to assure that there is no voids around the bolts. Anchor bolts and plates shall be set level and plumb, and within a tolerance necessary for their proper alignment and to the structure support. Flanges and anchors shall be set level and plumb, and within a tolerance necessary for their proper alignment and to the frangible structure they support. All bolts and other hardware shall be hot-dipped galvanized and shall be contractor furnished (unless otherwise indicated to be government furnished).

3.3.2 Embedded Couplings

Couplings embedded in concrete shall be installed so that the top of the coupling is flush with the top of concrete and conduits to be extended from the coupling are level and plumb. Foundations with embedded couplings that do not meet this requirement shall be removed and re-installed at the contractors expense.

3.4 QUALITY ASSURANCE

3.4.1 Testing

Testing for the concrete shall be arranged by the contractor and performed by an independent testing company (in the presence of the Resident Engineer) at the expense of the contractor. If these tests show concrete strength less than specified, the contractor shall correct the situation and be responsible for all associated cost.

3.4.2 Certification

The contractor shall furnish a certificate that all materials, compositions, densities and mixtures to be used meet local or state requirements. The contractor shall provide the Resident Engineer with a delivery ticket (batch ticket) for ready mix concrete from the concrete supplier at the time of each delivery which certifies compliance with material and quality requirements specified herein. The tickets shall indicate the delivery date, time dispatched, name and location of project, name of contractor, name of concrete producer, truck number, quantity, air content, admixtures and design strength of the concrete delivered.

3.5 REPAIR OR REPLACEMENT

The contractor shall restore concrete damaged by work under this contract to its original condition as directed by the Resident Engineer. The Resident Engineer shall reject any fresh concrete not meeting slump or air entrainment requirements. Any concrete not meeting strength requirements shall be removed and replaced by the contractor. Any repair or replacement costs shall be paid by the contractor.

END OF SECTION

DIVISION 16000

ELECTRICAL

TABLE OF CONTENTS

GENERAL	
1.1	GENERAL
1.1.1	Workmanship
1.1.2	Interpretation of Drawings
1.1.3	Rules
1.1.4	Coordination
1.2	REFERENCES
1.2.1	National Fire Protection Association (NFPA) Publications
1.2.2	F.A.A. Specifications and Standards
DDADIICTC	

PRODUCTS

Not Used

EXECUTION

Not Used

DIVISION 16000

ELECTRICAL

PART 1 GENERAL

1.1 GENERAL

This section covers the requirements for electrical work complete. The work covered under this section consists of furnishing all labor, tools, equipment and material to install the electrical work shown on the drawings and/or described by these specifications.

1.1.1 Workmanship

All electrical installation work shall be performed by experienced electricians regularly engaged in this type of work and properly licensed when required. All materials and equipment shall be installed in conformance with the contract documents, and in accordance with recommendations of the manufacturer as approved by the Resident Engineer.

1.1.2 Interpretation of Drawings

In general, the drawings utilize accepted diagrammatic symbolism to indicate electrical construction work. This symbol does not have any dimensional significance. The layout of wiring, circuits, outlets, and equipment is developed as an engineering aid and should not be interpreted as a release from responsibility for installing the work without space conflict, but all work shall be installed in accordance with the diagrammatic intent of the drawings.

1.1.3 Rules

The installation shall conform to this specification, the contract drawings and to the applicable requirements of the National Electrical Code, local code, or FAA standards. In cases where regulations and/or contract documents are conflicting or discrepancies occur, the more stringent requirement shall be followed and enforced.

1.1.4 Coordination

It is the responsibility of the contractor to totally familiarize himself/herself with the scope of the work involved and to coordinate his work with the other trades and personnel involved with the job site.

1.2 REFERENCES

The issues currently in force of the following specifications and standards form a part of this section, and are applicable as specified herein:

1.2.1 National Fire Protection Association (NFPA) Publications

No. 70 National Electrical Code

No. 78 Lightning Protection Code

1.2.2 FAA Specifications and Standards

UNLESS OTHERWISE INDICATED, THE CONTRACTOR SHALL COMPLY WITH THE FOLLOWING FAA SPECIFICATIONS AND STANDARDS:

FAA-C-1217f Electrical Work, Interior

FAA-C-1391b Installation and Splicing of Underground Cables

FAA-STD-019e Lightning and Surge Protection, Grounding, Bonding and

Shielding Requirements for Facilities and Electronic Equipment.

PART 2 PRODUCTS

Not Used

PART 3 EXECUTION

CONTRACTORS SHALL IMMEDIATELY NOTIFY THE FAA OF ANY CONFLICTS THAT EXIST WITHIN THE CONTRACT DOCUMENTS AND BETWEEN THOSE DOCUMENTS AND THE RULES, REGULATIONS AND CODES OF THE LOCAL UTILITY COMPANY AND LOCAL COUNTY OR STATE GOVERNING BODIES. IN CASES WHERE REGULATIONS AND/OR CONTRACT DOCUMENTS ARE CONFLICTING OR DISCREPANCIES OCCUR, THE MORE STRINGENT REQUIREMENT SHALL BE FOLLOWED AND ENFORCED.